
     

Introduction
This map has been designed as a planning tool for use by emergency managers for the response to and recovery 
from a hazardous geologic event, such as a large magnitude earthquake or a smaller occurrence such as a sinkhole 
formation. It also may be useful to land-use planners and regulators as a generalized guide to regional hazard 
mitigation actions. This deterministic map assumes that the occurrence of geologic hazards in the Coastal Plain 
region of South Carolina is related to the underlying geologic conditions. 

The South Carolina Geological Survey (SCGS) used several data sets to construct this map including known and 
geophysically inferred faults, epicenters and magnitudes of earthquakes, areas susceptible to liquefaction including 
sites of known liquefaction, a GIS analysis of landsliding potential, and areas of sinkhole and karst occurrence. All 
data sets have been assembled using GIS technology and are available digitally. The primary data sources used 
to compile this map include 7.5-minute topographic maps of the Coastal Plain, existing geologic maps at various 
scales, United States Geologic Survey (USGS) earthquake database, field records and maps showing locations of 
paleoliquefaction features, a map of the liquefaction features created by the 1886 Charleston earthquake, and 
various published reports on geologic hazards in the Coastal Plain. The quality and accuracy of the data varies 
according to the type of data, date of development, and original map scale. Therefore, for best results, this map 
should be used at the scale of construction, 
1:600,000. 

Liquefaction Areas
Liquefaction is the transformation of loosely 
packed sediment or cohesionless soil to a 
liquid state as a result of increased pore-
fluid pressure and reduced effective stress. It 
is caused by the ground shaking during an 
earthquake.  Soil-liquefaction potential is based 
on the interpretation of thick, cohesionless 
material (mostly sand) combined with a 
high water table. Two areas of liquefaction 
potential are delineated on this map. The area 
of highest potential consists of surficial Coastal 
Plain sediments younger than 400,000 years 
including the sediment in adjacent modern 
alluvial valleys. This area also corresponds with 
the greatest occurrence of known liquefaction 
and paleoliquefaction sites, and it is similar 
to the delineation of Obermeier and others 
(1987; 1990). They field checked the area of 
predominantly marine sediments younger than 
240,000 years for pre-1886 sand blows. Therefore, the new high liquefaction-potential area sets its northwestern-
most boundary at the farthest inland occurrence of liquefaction sites, which corresponds with the Bethera Scarp 
physiographic feature (Doar and Willoughby, 2006). The high liquefaction-potential area includes the flood plains of 
modern rivers and streams. The second liquefaction area consists of the upstream extensions of stream valleys and 
is given a lower potential for liquefaction. The absence of evidence for liquefaction features is the basis for assigning 
a lower potential. Few, if any, liquefaction sites are found in stream valleys probably owing to the dynamic nature 
of the stream system; but because these areas contain water-saturated, unconsolidated sediments, they have a 
potential to liquefy.

Paleoliquefaction features shown on the map were transferred from maps and reports prepared by Dr. Pradeep 
Talwani and his students at the University of South Carolina (Talwani and Cox, 1985; Amick, 1990; and Schaeffer, 
1995), and from Obermeier and others (1987; 1990) of the USGS. The  liquefaction features formed by the 1886 
Charleston earthquake were transferred from Earle Sloan’s map presented in Dutton (1889, plate 28). 

Collapse Potential
Two different areas of collapse potential are shown on the map. The first and larger area is taken from a USGS report 
on potentially karstic rocks in southeastern United States (Weary, 2008). This map area indicates where near-surface 
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An example of a sand blow, generally referred to as liquefaction, associated 
with the 1886 Charleston earthquake.

sediments are either carbonate rock or contain 
carbonate sediment. The area lies inland of the 
zone of liquefaction and consists almost entirely of 
the middle Coastal Plain. Additionally, a few areas 
with known sinkhole potential are delineated in 
the potential-liquefaction zones. They are mapped 
on the basis of karstic features (e.g. sinkholes, 
caves, and losing streams). Two areas north of 
Myrtle Beach are delineated from sinkhole studies 
by Hockensmith and Pelletier (1987). A large area 
is found around the town of Beaufort. The data for 
this area comes from geologic mapping by Doar 
(2003). 

Another area of potential collaspe occurs east of 
Lake Moultrie along the Santee River, and recent 
sinkhole activity in Georgetown is shown. There 
is field evidence for significantly more karstic 
features in the lower Coastal Plain, but because of 
map scale sinkhole potential is generalized.

Landslide Potential
Areas of potential landsliding have been 
delineated using GIS analysis. A slope-stability 
model was developed to identify hill slopes 
sensitive to potential landslide hazard. Modeling 
was done in ArcGIS 9.3 and resulted in areas with a 
slope surface equal to and greater than 10 percent. 
These areas were generalized for this map. 
Additional information on this process is available 
from the South Carolina Geological Survey.

Areas with landslide potential consist of steep 
slopes and thick, cohesionless materials. The 
cohesionless materials include thick and thin units 
that mainly consist of sand with some clay beds. 
Areas with landslide potential were recognized 
using a known landslide occurrence in Lexington 
County as the type example (Howard, 2010). 
The landslide occurred on a 12 percent slope 
surface. Using this information, it was determined 
that a slope surface of 10 percent or greater 
was appropriate for representing areas sensitive 
to potential landslide hazard. Two major areas 
of landslide potential are recognized. First are 
oversteepened banks of major rivers, such as the 
bluffs of the Congaree and Wateree Rivers, and 
some of their minor stream tributaries. These areas lie adjacent to large stream alluvial valleys. The second area 
consists of areas adjacent to Fall zone, which is that area of the Coastal Plain immediately southeast of the Piedmont 
and exhibits high relief particularly in incised stream valleys.

Known Faults
The Earthquake History and Fault Structures map (inset) is a derivative of the Structural Features Map of South 
Carolina (Maybin, 1998) and includes new faults that are interpreted to be responsible for the 1886 Charleston 
earthquake (cf. Dura-Gomez and Talwani, 2009).  The Interpreted Isoseismals from the Charleston Earthquake map 
(inset) for the 1886 Charleston earthquake was developed by Bollinger (1977), and it shows the extent of shaking 
intensity associated with this event relative to today’s infrastructure. 

Because faults are buried structures with no surficial expression, their presence is inferred from secondary lines of 
evidence. They are inferred from geophysical data. There are two designations of faults on the structural features 
map. The first set of faults consists of features inferred from aeromagnetic anomaly data. The interpretation source 
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for these structures is the Structural 
Features of South Carolina (Maybin, 
1998). The second set of faults called 
“new” is inferred from seismicity and 
first-motion studies of earthquakes 
in the vicinity of the 1886 Charleston 
epicenter. These faults were interpreted 
by Dura-Gomez and Talwani (2009) 
to be the causal faults of the 1886 
Charleston earthquake.

Recent Seismicity

The Earthquake History and Fault 
Structures map (inset) also shows 
epicenters of 650 earthquakes in and 
closely adjacent to South Carolina. The 
earthquakes are separated into three 
categories by their magnitude. Major 
cluster sites are:  the Summerville area, site 
of the 1886 earthquake; Lakes Monticello and Jocassee, sites of reservoir induced seismicity; and the Eastern Piedmont 
fault system, the northeastern trending faulted area between Savannah River and the North Carolina border with 
Columbia along its axis. Several counties have no record of any significant seismic events including Horry, Marion, 
Dillon, Williamsburg, Jasper, and Hampton Counties.
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Introduction
This map has been designed as a planning tool for use by emergency managers for the response to and recovery 
from a hazardous geologic event, such as a large magnitude earthquake or a smaller occurrence such as a sinkhole 
formation. It also may be useful to land-use planners and regulators as a generalized guide to regional hazard 
mitigation actions. This deterministic map assumes that the occurrence of geologic hazards in the Coastal Plain 
region of South Carolina is related to the underlying geologic conditions. 

The South Carolina Geological Survey (SCGS) used several data sets to construct this map including known and 
geophysically inferred faults, epicenters and magnitudes of earthquakes, areas susceptible to liquefaction including 
sites of known liquefaction, a GIS analysis of landsliding potential, and areas of sinkhole and karst occurrence. All 
data sets have been assembled using GIS technology and are available digitally. The primary data sources used 
to compile this map include 7.5-minute topographic maps of the Coastal Plain, existing geologic maps at various 
scales, United States Geologic Survey (USGS) earthquake database, field records and maps showing locations of 
paleoliquefaction features, a map of the liquefaction features created by the 1886 Charleston earthquake, and 
various published reports on geologic hazards in the Coastal Plain. The quality and accuracy of the data varies 
according to the type of data, date of development, and original map scale. Therefore, for best results, this map 
should be used at the scale of construction, 
1:600,000. 

Liquefaction Areas
Liquefaction is the transformation of loosely 
packed sediment or cohesionless soil to a 
liquid state as a result of increased pore-
fluid pressure and reduced effective stress. It 
is caused by the ground shaking during an 
earthquake.  Soil-liquefaction potential is based 
on the interpretation of thick, cohesionless 
material (mostly sand) combined with a 
high water table. Two areas of liquefaction 
potential are delineated on this map. The area 
of highest potential consists of surficial Coastal 
Plain sediments younger than 400,000 years 
including the sediment in adjacent modern 
alluvial valleys. This area also corresponds with 
the greatest occurrence of known liquefaction 
and paleoliquefaction sites, and it is similar 
to the delineation of Obermeier and others 
(1987; 1990). They field checked the area of 
predominantly marine sediments younger than 
240,000 years for pre-1886 sand blows. Therefore, the new high liquefaction-potential area sets its northwestern-
most boundary at the farthest inland occurrence of liquefaction sites, which corresponds with the Bethera Scarp 
physiographic feature (Doar and Willoughby, 2006). The high liquefaction-potential area includes the flood plains of 
modern rivers and streams. The second liquefaction area consists of the upstream extensions of stream valleys and 
is given a lower potential for liquefaction. The absence of evidence for liquefaction features is the basis for assigning 
a lower potential. Few, if any, liquefaction sites are found in stream valleys probably owing to the dynamic nature 
of the stream system; but because these areas contain water-saturated, unconsolidated sediments, they have a 
potential to liquefy.

Paleoliquefaction features shown on the map were transferred from maps and reports prepared by Dr. Pradeep 
Talwani and his students at the University of South Carolina (Talwani and Cox, 1985; Amick, 1990; and Schaeffer, 
1995), and from Obermeier and others (1987; 1990) of the USGS. The  liquefaction features formed by the 1886 
Charleston earthquake were transferred from Earle Sloan’s map presented in Dutton (1889, plate 28). 

Collapse Potential
Two different areas of collapse potential are shown on the map. The first and larger area is taken from a USGS report 
on potentially karstic rocks in southeastern United States (Weary, 2008). This map area indicates where near-surface 
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An example of a sand blow, generally referred to as liquefaction, associated 
with the 1886 Charleston earthquake.

sediments are either carbonate rock or contain 
carbonate sediment. The area lies inland of the 
zone of liquefaction and consists almost entirely of 
the middle Coastal Plain. Additionally, a few areas 
with known sinkhole potential are delineated in 
the potential-liquefaction zones. They are mapped 
on the basis of karstic features (e.g. sinkholes, 
caves, and losing streams). Two areas north of 
Myrtle Beach are delineated from sinkhole studies 
by Hockensmith and Pelletier (1987). A large area 
is found around the town of Beaufort. The data for 
this area comes from geologic mapping by Doar 
(2003). 

Another area of potential collaspe occurs east of 
Lake Moultrie along the Santee River, and recent 
sinkhole activity in Georgetown is shown. There 
is field evidence for significantly more karstic 
features in the lower Coastal Plain, but because of 
map scale sinkhole potential is generalized.

Landslide Potential
Areas of potential landsliding have been 
delineated using GIS analysis. A slope-stability 
model was developed to identify hill slopes 
sensitive to potential landslide hazard. Modeling 
was done in ArcGIS 9.3 and resulted in areas with a 
slope surface equal to and greater than 10 percent. 
These areas were generalized for this map. 
Additional information on this process is available 
from the South Carolina Geological Survey.

Areas with landslide potential consist of steep 
slopes and thick, cohesionless materials. The 
cohesionless materials include thick and thin units 
that mainly consist of sand with some clay beds. 
Areas with landslide potential were recognized 
using a known landslide occurrence in Lexington 
County as the type example (Howard, 2010). 
The landslide occurred on a 12 percent slope 
surface. Using this information, it was determined 
that a slope surface of 10 percent or greater 
was appropriate for representing areas sensitive 
to potential landslide hazard. Two major areas 
of landslide potential are recognized. First are 
oversteepened banks of major rivers, such as the 
bluffs of the Congaree and Wateree Rivers, and 
some of their minor stream tributaries. These areas lie adjacent to large stream alluvial valleys. The second area 
consists of areas adjacent to Fall zone, which is that area of the Coastal Plain immediately southeast of the Piedmont 
and exhibits high relief particularly in incised stream valleys.

Known Faults
The Earthquake History and Fault Structures map (inset) is a derivative of the Structural Features Map of South 
Carolina (Maybin, 1998) and includes new faults that are interpreted to be responsible for the 1886 Charleston 
earthquake (cf. Dura-Gomez and Talwani, 2009).  The Interpreted Isoseismals from the Charleston Earthquake map 
(inset) for the 1886 Charleston earthquake was developed by Bollinger (1977), and it shows the extent of shaking 
intensity associated with this event relative to today’s infrastructure. 

Because faults are buried structures with no surficial expression, their presence is inferred from secondary lines of 
evidence. They are inferred from geophysical data. There are two designations of faults on the structural features 
map. The first set of faults consists of features inferred from aeromagnetic anomaly data. The interpretation source 
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for these structures is the Structural 
Features of South Carolina (Maybin, 
1998). The second set of faults called 
“new” is inferred from seismicity and 
first-motion studies of earthquakes 
in the vicinity of the 1886 Charleston 
epicenter. These faults were interpreted 
by Dura-Gomez and Talwani (2009) 
to be the causal faults of the 1886 
Charleston earthquake.

Recent Seismicity

The Earthquake History and Fault 
Structures map (inset) also shows 
epicenters of 650 earthquakes in and 
closely adjacent to South Carolina. The 
earthquakes are separated into three 
categories by their magnitude. Major 
cluster sites are:  the Summerville area, site 
of the 1886 earthquake; Lakes Monticello and Jocassee, sites of reservoir induced seismicity; and the Eastern Piedmont 
fault system, the northeastern trending faulted area between Savannah River and the North Carolina border with 
Columbia along its axis. Several counties have no record of any significant seismic events including Horry, Marion, 
Dillon, Williamsburg, Jasper, and Hampton Counties.
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Introduction
This map has been designed as a planning tool for use by emergency managers for the response to and recovery 
from a hazardous geologic event, such as a large magnitude earthquake or a smaller occurrence such as a sinkhole 
formation. It also may be useful to land-use planners and regulators as a generalized guide to regional hazard 
mitigation actions. This deterministic map assumes that the occurrence of geologic hazards in the Coastal Plain 
region of South Carolina is related to the underlying geologic conditions. 

The South Carolina Geological Survey (SCGS) used several data sets to construct this map including known and 
geophysically inferred faults, epicenters and magnitudes of earthquakes, areas susceptible to liquefaction including 
sites of known liquefaction, a GIS analysis of landsliding potential, and areas of sinkhole and karst occurrence. All 
data sets have been assembled using GIS technology and are available digitally. The primary data sources used 
to compile this map include 7.5-minute topographic maps of the Coastal Plain, existing geologic maps at various 
scales, United States Geologic Survey (USGS) earthquake database, field records and maps showing locations of 
paleoliquefaction features, a map of the liquefaction features created by the 1886 Charleston earthquake, and 
various published reports on geologic hazards in the Coastal Plain. The quality and accuracy of the data varies 
according to the type of data, date of development, and original map scale. Therefore, for best results, this map 
should be used at the scale of construction, 
1:600,000. 

Liquefaction Areas
Liquefaction is the transformation of loosely 
packed sediment or cohesionless soil to a 
liquid state as a result of increased pore-
fluid pressure and reduced effective stress. It 
is caused by the ground shaking during an 
earthquake.  Soil-liquefaction potential is based 
on the interpretation of thick, cohesionless 
material (mostly sand) combined with a 
high water table. Two areas of liquefaction 
potential are delineated on this map. The area 
of highest potential consists of surficial Coastal 
Plain sediments younger than 400,000 years 
including the sediment in adjacent modern 
alluvial valleys. This area also corresponds with 
the greatest occurrence of known liquefaction 
and paleoliquefaction sites, and it is similar 
to the delineation of Obermeier and others 
(1987; 1990). They field checked the area of 
predominantly marine sediments younger than 
240,000 years for pre-1886 sand blows. Therefore, the new high liquefaction-potential area sets its northwestern-
most boundary at the farthest inland occurrence of liquefaction sites, which corresponds with the Bethera Scarp 
physiographic feature (Doar and Willoughby, 2006). The high liquefaction-potential area includes the flood plains of 
modern rivers and streams. The second liquefaction area consists of the upstream extensions of stream valleys and 
is given a lower potential for liquefaction. The absence of evidence for liquefaction features is the basis for assigning 
a lower potential. Few, if any, liquefaction sites are found in stream valleys probably owing to the dynamic nature 
of the stream system; but because these areas contain water-saturated, unconsolidated sediments, they have a 
potential to liquefy.

Paleoliquefaction features shown on the map were transferred from maps and reports prepared by Dr. Pradeep 
Talwani and his students at the University of South Carolina (Talwani and Cox, 1985; Amick, 1990; and Schaeffer, 
1995), and from Obermeier and others (1987; 1990) of the USGS. The  liquefaction features formed by the 1886 
Charleston earthquake were transferred from Earle Sloan’s map presented in Dutton (1889, plate 28). 

Collapse Potential
Two different areas of collapse potential are shown on the map. The first and larger area is taken from a USGS report 
on potentially karstic rocks in southeastern United States (Weary, 2008). This map area indicates where near-surface 
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An example of a sand blow, generally referred to as liquefaction, associated 
with the 1886 Charleston earthquake.

sediments are either carbonate rock or contain 
carbonate sediment. The area lies inland of the 
zone of liquefaction and consists almost entirely of 
the middle Coastal Plain. Additionally, a few areas 
with known sinkhole potential are delineated in 
the potential-liquefaction zones. They are mapped 
on the basis of karstic features (e.g. sinkholes, 
caves, and losing streams). Two areas north of 
Myrtle Beach are delineated from sinkhole studies 
by Hockensmith and Pelletier (1987). A large area 
is found around the town of Beaufort. The data for 
this area comes from geologic mapping by Doar 
(2003). 

Another area of potential collaspe occurs east of 
Lake Moultrie along the Santee River, and recent 
sinkhole activity in Georgetown is shown. There 
is field evidence for significantly more karstic 
features in the lower Coastal Plain, but because of 
map scale sinkhole potential is generalized.

Landslide Potential
Areas of potential landsliding have been 
delineated using GIS analysis. A slope-stability 
model was developed to identify hill slopes 
sensitive to potential landslide hazard. Modeling 
was done in ArcGIS 9.3 and resulted in areas with a 
slope surface equal to and greater than 10 percent. 
These areas were generalized for this map. 
Additional information on this process is available 
from the South Carolina Geological Survey.

Areas with landslide potential consist of steep 
slopes and thick, cohesionless materials. The 
cohesionless materials include thick and thin units 
that mainly consist of sand with some clay beds. 
Areas with landslide potential were recognized 
using a known landslide occurrence in Lexington 
County as the type example (Howard, 2010). 
The landslide occurred on a 12 percent slope 
surface. Using this information, it was determined 
that a slope surface of 10 percent or greater 
was appropriate for representing areas sensitive 
to potential landslide hazard. Two major areas 
of landslide potential are recognized. First are 
oversteepened banks of major rivers, such as the 
bluffs of the Congaree and Wateree Rivers, and 
some of their minor stream tributaries. These areas lie adjacent to large stream alluvial valleys. The second area 
consists of areas adjacent to Fall zone, which is that area of the Coastal Plain immediately southeast of the Piedmont 
and exhibits high relief particularly in incised stream valleys.

Known Faults
The Earthquake History and Fault Structures map (inset) is a derivative of the Structural Features Map of South 
Carolina (Maybin, 1998) and includes new faults that are interpreted to be responsible for the 1886 Charleston 
earthquake (cf. Dura-Gomez and Talwani, 2009).  The Interpreted Isoseismals from the Charleston Earthquake map 
(inset) for the 1886 Charleston earthquake was developed by Bollinger (1977), and it shows the extent of shaking 
intensity associated with this event relative to today’s infrastructure. 

Because faults are buried structures with no surficial expression, their presence is inferred from secondary lines of 
evidence. They are inferred from geophysical data. There are two designations of faults on the structural features 
map. The first set of faults consists of features inferred from aeromagnetic anomaly data. The interpretation source 

Sinkhole in Horry County. This cover-collapse sinkhole is the most common 
type forming depressions on the landscape.

Sinkhole created by the collapse of limestone material just below the 
surface. 
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for these structures is the Structural 
Features of South Carolina (Maybin, 
1998). The second set of faults called 
“new” is inferred from seismicity and 
first-motion studies of earthquakes 
in the vicinity of the 1886 Charleston 
epicenter. These faults were interpreted 
by Dura-Gomez and Talwani (2009) 
to be the causal faults of the 1886 
Charleston earthquake.

Recent Seismicity

The Earthquake History and Fault 
Structures map (inset) also shows 
epicenters of 650 earthquakes in and 
closely adjacent to South Carolina. The 
earthquakes are separated into three 
categories by their magnitude. Major 
cluster sites are:  the Summerville area, site 
of the 1886 earthquake; Lakes Monticello and Jocassee, sites of reservoir induced seismicity; and the Eastern Piedmont 
fault system, the northeastern trending faulted area between Savannah River and the North Carolina border with 
Columbia along its axis. Several counties have no record of any significant seismic events including Horry, Marion, 
Dillon, Williamsburg, Jasper, and Hampton Counties.
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Introduction
This map has been designed as a planning tool for use by emergency managers for the response to and recovery 
from a hazardous geologic event, such as a large magnitude earthquake or a smaller occurrence such as a sinkhole 
formation. It also may be useful to land-use planners and regulators as a generalized guide to regional hazard 
mitigation actions. This deterministic map assumes that the occurrence of geologic hazards in the Coastal Plain 
region of South Carolina is related to the underlying geologic conditions. 

The South Carolina Geological Survey (SCGS) used several data sets to construct this map including known and 
geophysically inferred faults, epicenters and magnitudes of earthquakes, areas susceptible to liquefaction including 
sites of known liquefaction, a GIS analysis of landsliding potential, and areas of sinkhole and karst occurrence. All 
data sets have been assembled using GIS technology and are available digitally. The primary data sources used 
to compile this map include 7.5-minute topographic maps of the Coastal Plain, existing geologic maps at various 
scales, United States Geologic Survey (USGS) earthquake database, field records and maps showing locations of 
paleoliquefaction features, a map of the liquefaction features created by the 1886 Charleston earthquake, and 
various published reports on geologic hazards in the Coastal Plain. The quality and accuracy of the data varies 
according to the type of data, date of development, and original map scale. Therefore, for best results, this map 
should be used at the scale of construction, 
1:600,000. 

Liquefaction Areas
Liquefaction is the transformation of loosely 
packed sediment or cohesionless soil to a 
liquid state as a result of increased pore-
fluid pressure and reduced effective stress. It 
is caused by the ground shaking during an 
earthquake.  Soil-liquefaction potential is based 
on the interpretation of thick, cohesionless 
material (mostly sand) combined with a 
high water table. Two areas of liquefaction 
potential are delineated on this map. The area 
of highest potential consists of surficial Coastal 
Plain sediments younger than 400,000 years 
including the sediment in adjacent modern 
alluvial valleys. This area also corresponds with 
the greatest occurrence of known liquefaction 
and paleoliquefaction sites, and it is similar 
to the delineation of Obermeier and others 
(1987; 1990). They field checked the area of 
predominantly marine sediments younger than 
240,000 years for pre-1886 sand blows. Therefore, the new high liquefaction-potential area sets its northwestern-
most boundary at the farthest inland occurrence of liquefaction sites, which corresponds with the Bethera Scarp 
physiographic feature (Doar and Willoughby, 2006). The high liquefaction-potential area includes the flood plains of 
modern rivers and streams. The second liquefaction area consists of the upstream extensions of stream valleys and 
is given a lower potential for liquefaction. The absence of evidence for liquefaction features is the basis for assigning 
a lower potential. Few, if any, liquefaction sites are found in stream valleys probably owing to the dynamic nature 
of the stream system; but because these areas contain water-saturated, unconsolidated sediments, they have a 
potential to liquefy.

Paleoliquefaction features shown on the map were transferred from maps and reports prepared by Dr. Pradeep 
Talwani and his students at the University of South Carolina (Talwani and Cox, 1985; Amick, 1990; and Schaeffer, 
1995), and from Obermeier and others (1987; 1990) of the USGS. The  liquefaction features formed by the 1886 
Charleston earthquake were transferred from Earle Sloan’s map presented in Dutton (1889, plate 28). 

Collapse Potential
Two different areas of collapse potential are shown on the map. The first and larger area is taken from a USGS report 
on potentially karstic rocks in southeastern United States (Weary, 2008). This map area indicates where near-surface 

MAP DISCUSSION

An example of a sand blow, generally referred to as liquefaction, associated 
with the 1886 Charleston earthquake.

sediments are either carbonate rock or contain 
carbonate sediment. The area lies inland of the 
zone of liquefaction and consists almost entirely of 
the middle Coastal Plain. Additionally, a few areas 
with known sinkhole potential are delineated in 
the potential-liquefaction zones. They are mapped 
on the basis of karstic features (e.g. sinkholes, 
caves, and losing streams). Two areas north of 
Myrtle Beach are delineated from sinkhole studies 
by Hockensmith and Pelletier (1987). A large area 
is found around the town of Beaufort. The data for 
this area comes from geologic mapping by Doar 
(2003). 

Another area of potential collaspe occurs east of 
Lake Moultrie along the Santee River, and recent 
sinkhole activity in Georgetown is shown. There 
is field evidence for significantly more karstic 
features in the lower Coastal Plain, but because of 
map scale sinkhole potential is generalized.

Landslide Potential
Areas of potential landsliding have been 
delineated using GIS analysis. A slope-stability 
model was developed to identify hill slopes 
sensitive to potential landslide hazard. Modeling 
was done in ArcGIS 9.3 and resulted in areas with a 
slope surface equal to and greater than 10 percent. 
These areas were generalized for this map. 
Additional information on this process is available 
from the South Carolina Geological Survey.

Areas with landslide potential consist of steep 
slopes and thick, cohesionless materials. The 
cohesionless materials include thick and thin units 
that mainly consist of sand with some clay beds. 
Areas with landslide potential were recognized 
using a known landslide occurrence in Lexington 
County as the type example (Howard, 2010). 
The landslide occurred on a 12 percent slope 
surface. Using this information, it was determined 
that a slope surface of 10 percent or greater 
was appropriate for representing areas sensitive 
to potential landslide hazard. Two major areas 
of landslide potential are recognized. First are 
oversteepened banks of major rivers, such as the 
bluffs of the Congaree and Wateree Rivers, and 
some of their minor stream tributaries. These areas lie adjacent to large stream alluvial valleys. The second area 
consists of areas adjacent to Fall zone, which is that area of the Coastal Plain immediately southeast of the Piedmont 
and exhibits high relief particularly in incised stream valleys.

Known Faults
The Earthquake History and Fault Structures map (inset) is a derivative of the Structural Features Map of South 
Carolina (Maybin, 1998) and includes new faults that are interpreted to be responsible for the 1886 Charleston 
earthquake (cf. Dura-Gomez and Talwani, 2009).  The Interpreted Isoseismals from the Charleston Earthquake map 
(inset) for the 1886 Charleston earthquake was developed by Bollinger (1977), and it shows the extent of shaking 
intensity associated with this event relative to today’s infrastructure. 

Because faults are buried structures with no surficial expression, their presence is inferred from secondary lines of 
evidence. They are inferred from geophysical data. There are two designations of faults on the structural features 
map. The first set of faults consists of features inferred from aeromagnetic anomaly data. The interpretation source 

Sinkhole in Horry County. This cover-collapse sinkhole is the most common 
type forming depressions on the landscape.

Sinkhole created by the collapse of limestone material just below the 
surface. 
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for these structures is the Structural 
Features of South Carolina (Maybin, 
1998). The second set of faults called 
“new” is inferred from seismicity and 
first-motion studies of earthquakes 
in the vicinity of the 1886 Charleston 
epicenter. These faults were interpreted 
by Dura-Gomez and Talwani (2009) 
to be the causal faults of the 1886 
Charleston earthquake.

Recent Seismicity

The Earthquake History and Fault 
Structures map (inset) also shows 
epicenters of 650 earthquakes in and 
closely adjacent to South Carolina. The 
earthquakes are separated into three 
categories by their magnitude. Major 
cluster sites are:  the Summerville area, site 
of the 1886 earthquake; Lakes Monticello and Jocassee, sites of reservoir induced seismicity; and the Eastern Piedmont 
fault system, the northeastern trending faulted area between Savannah River and the North Carolina border with 
Columbia along its axis. Several counties have no record of any significant seismic events including Horry, Marion, 
Dillon, Williamsburg, Jasper, and Hampton Counties.
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MAP GUIDE

This map and accompanying data have been prepared by the South Carolina 
Department of Natural Resources – Geological Survey. The information 
presented includes subjective assumptions developed on the basis of standard 
geologic principles. This map has been designed as a generalized guide to 
regional hazard potential. The map also may be useful to planners and 
regulators as a tool in the response and recovery from significant geologic 
hazards in the Coastal Plain. However, information should not be used for 
land-use zoning, building-code requirements, or defining insurance rate zones. 
The relative hazard zones also are not intended to replace site-specific 
evaluations, such as engineering analysis or design.  Hazard potential should 
be evaluated through site-specific geotechnical investigation by qualified 
practitioners. Not intended for use at scale greater than presented here.
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